top of page

原 著 論 文

  • 169. Mixed-Potential-Driven Catalysis: An Electrochemical Mechanism for Room-Temperature CO Oxidation on Gold Catalysts, Mo Yan, Asif Muhammad, Ravi Singh, Kotaro Takeyasu, Junji Nakamura, Advanced Science, in press (2025).

  • 168. Why Does the Performance of Nitrogen-Doped Carbon Electrocatalysts Decrease in Acidic Conditions?, Kenji Hayashida, Junji Nakamura, Kotaro Takeyasu, Angewandte Chemie International Edition, e202502702 (2025). DOI:10.1002/anie.202502702

  • 167. Design principles of nitrogen-doped carbon catalysts for oxygen reduction reaction, Kenji Hayashida, Bang Lu, Satoru Takakusagi, Junji Nakamura and Kotaro Takeyasu, ChemElectroChem, in press (2025).

  • 166. Nanoarchitectonics for Pentagon Defects in Carbon for Oxygen Reduction Reaction, Guoping Chen, Taro Koide, Junji Nakamura, Katsuhiko Ariga, Small Methods, 2500069, 1-25 (2025).

  • 165. CO2 Desorption Dynamics Reveal Structure Insensitivity in Formate Decomposition on Copper Surfaces. Authors: Jiamei Quan, Takahiro Kondo, Junji Nakamura, J. Phys. Chem. C, 128(50), 21438–21446 (2024).

  • 164. Simultaneous Measurement of Oxygen Consumption Rate and Thermogenesis in Biological Systems for Non-equilibrium Energetics, Nuning Anugrah Putri Namari, Mo Yan, Junji Nakamura  , Kotaro Takeyasu, e-Journal of Surface Science and Nanotechnology, 22,3,273-278(2024)

  • 163. Pentagon-Rich Caged Carbon Catalyst for the Oxygen Reduction Reaction in Acidic Electrolytes,Guoping Chen, Miho Isegawa, Taro Koide, Yasuo Yoshida, Koji Harano, Kenji Hayashida,Shusaku Fujita, Kotaro Takeyasu, Katsuhiko Ariga, and Junji Nakamura, Angew. Chem. Int. Ed. 63 e202410747 (2024)

  • 162. Theoretical framework for mixedpotential-driven catalysis, Mo Yan, Nuning Anugrah Putri Namari, Junji Nakamura, and Kotaro Takeyasu, Communications Chemistry, 7, 69 (2024)

  • 161. “Experimental Verification of Mixed-potential-driven Catalysis”, Kotaro Takeyasu*, Yuta Katane, Naoto Miyamoto, Mo Yan, Junji Nakamura, e-Journal of Surface Science and Nanotechnology, Vol. 22, pp. 164-168 (2023).

  • 160. Nanoporous Hollow Carbon Spheres Derived from Fullerene Assembly as Electrode Materials for High-Performance Supercapacitors, Lok Kumar Shrestha, Zexuan Wei, Gokulnath Subramaniam, Rekha Goswami Shrestha, Ravi Singh, Marappan Sathish, Renzhi Ma, Jonathan P. Hill, Junji Nakamura and Katsuhiko Ariga, Nanomaterials, 13, 946, (2023).

  • 159. Experimental Verification of Mixed-potential-driven Catalysis, K. Takeyasu, Y. Katane, N. Miyamoto, M. Yan, J. Nakamura, e-Journal of Surface Science and Nanotechnology, 2023-018, (2022).

  • 158. Chemisorption of CO2 on Nitrogen-Doped Graphitic Carbons, R. Shibuya, K. Takeyasu, D. Guo, T. Kondo, J. Nakamura, Langmuir 38 (47), 14430-14438 (2022).

  • 157. Activating Nitrogen-doped Graphene Oxygen Reduction Electrocatalysts in Acidic Electrolytes using Hydrophobic Cavities and Proton-conductive Particles, Santosh K. Singh, Kotaro Takeyasu, Kaito Homma, Shigeharu Ito, Takashi Morinaga, Yuto Endo, Moeko Furukawa, Toshiyuki Mori, Hirohito Ogasawara, and Junji Nakamura, Angewandte Chemie-International Edetion, 61, e202212506 (2022).

  • 156. Hollow Spherical Fullerene Obtained by Kinetically Controlled Liquid-Liquid Interfacial Precipitation, Guoping Chen, Flavien Sciortino, Kotaro Takeyasu, Junji Nakamura, Jonathan P. Hill, Lok Kumar Shrestha, and Katsuhiko Ariga, Chem Asian J. (2022). e202200756

  • 155. Versatile nanoarchitectonics of Pt with morphology control of oxygen  reduction reaction catalysts, Guoping Chen, Santosh K. Singh, Kotaro Takeyasu, Jonathan P. Hill, Junji Nakamura and Katsuhiko Ariga, Science and Technology of Advanced Materials, 23, 413-423 (2022).

  • 154. Hydrogenation of Formate Species Using Atomic Hydrogen on a Cu(111) Model Catalyst, Kotaro Takeyasu, Yasutaka Sawaki, Takumi Imabayashi, Septia Eka Marsha Putra, Harry Handoko Halim, Jiamei Quan, Yuji Hamamoto, Ikutaro Hamada, Yoshitada Morikawa, Takahiro Kondo, Tadahiro Fujitani, and Junji Nakamura, J.Am.Chem.Soc.,144, 12158-12166 (2022).

  • 153. A newly designed compact CEY-XAFS cell in the soft X-ray region and its application to surface XAFS measurements under ambient-pressure conditions without photoinduced side effects, Hiroshi Shimizu, Ryo Toyoshima, Kazuhisa Isegawa, Kazuhiko Mase, Junji Nakamura and Hiroshi Kondoh, Phys. Chem. Chem. Phys., 24, 2988–2996 (2022).

  • 152. Ethanol-ethylene conversion mechanism on hydrogen boride sheets probed by infrared absorption spectroscopy, Asahi Fujino, Shin-ichi Ito, Taiga Goto, Ryota Ishibiki, Ryota Osuga, Junko N. Kondo, Tadahiro Fujitani, Junji Nakamura, Hideo Hosono and Takahiro Kondo, Physical Chemistry Chemical Physics, 23, 7724-7734 (2021).

  • 151. CoOx electro-catalysts anchored on nitrogen-doped carbon nanotubes for the oxygen evolution reaction, Santosh K. Singh, Kotaro Takeyasu, Bappi Paul, Sachin K. Sharmab and Junji Nakamura, Sustainable Energy & Fuels, 5 (3), 820-827 (2021).

  • 150. Role of Pyridinic Nitrogen in the Mechanism of the Oxygen Reduction Reaction on Carbon Electrocatalysts, Kotaro Takeyasu, Moeko Furukawa, Yuto Shimoyama, Santosh K. Singh, Junji Nakamura, Angewandte Chemie-International Edition, 60 (10), 5121-5124 (2020).

  • 149. Cracking of squalene into isoprene as chemical utilization of algae oil, Kazuya Kimura, Kazuma Shiraishi, Takahiro Kondo, Junji Nakamura and Tadahiro Fujitani, Green Chemistry, 22 (10), 3083-3087 (2020).

  • 148. Nitrogen doping of carbon nanoballoons by radiofrequency magnetron plasma and evaluation of their oxygen reduction reaction activity, Ryota Takahashi, Toru Harigai, Tsuyoshi Tanimoto, Hirofumi Takikawa, Toshiya Setaka, Junji Nakamura, Yoshiyuki Suda, ELECTRONICS and COMMUNICATIONS in JAPAN, 102 (8), 3-10 (2019).

  • 147. Hydrogenated Borophene Shows Catalytic Activity as Solid Acid, Asahi Fujino, Shin-ichi Ito, Taiga Goto, Ryota Ishibiki, Junko N. Kondo, Tadahiro Fujitani, Junji Nakamura, Hideo Hosono, Takahiro Kondo, ACS Omega, 4 (9), 14100-14104 (2019).

  • 146. Vibration-driven reaction of CO2 on Cu surfaces via Eley–Rideal-type mechanism, Jiamei Quan, Fahdzi Muttaqien, Takahiro Kondo, Taijun Kozarashi, Tomoyasu Mogi, Takumi Imabayashi, Yuji Hamamoto, Kouji Inagaki, Ikutaro Hamada, Yoshitada Morikawa, Junji Nakamura, Nature Chemistry, 11 (8), 722-729 (2019).

  • 145. 「高周波マグネトロンプラズマによるカーボンナノバルーンへの窒素ドープとその酸素還元活性評価」髙橋 良太, 針谷 達, 谷本 壮, 滝川 浩史, 瀬高 俊哉, 中村 潤児, 須田 善行、電気学会論文誌A(基礎・材料・共通部門誌), 139 (3), 140-146 (2019).

  • 144. Argument on Cu-Zn Active Site for Methanol Synthesis, Kotaro Takeyasu, Tadahiro Fujitani, Junji Nakamura, Accounts of Materials & Surface Research 4 (1), 9-17 (2019).

  • 143. Platinum nanoparticles supported on reduced graphene oxide prepared in situ by a continuous one-step laser process, Ina Haxhiaj, Sebastian Tigges, Damian Firla, Xiaorui Zhang, Ulrich Hagemann, Takahiro Kondo, Junji Nakamura, Galina Marzun, Stephan Barcikowski, Appl. Surf. Sci., 469, 811~820 (2019).

  • 142. Active Sites and Mechanism of Oxygen Reduction Reaction Electrocatalysis on Nitrogen-Doped Carbon Materials, Santosh K. Singh, Kotaro Takeyasu, Junji Nakamura, Advanced Materials, 31 (3) (2018).

  • 141. Bottom-up design of nitrogen-containing carbon catalysts for the oxygen reduction reaction, Riku Shibuya, Takahiro Kondo, Junji Nakamura, ChemCatChem, 10 (9), 2019-2023 (2018)

  • 140. Formation and characterization of hydrogen boride sheets derived from MgB2 by cation exchange, Hiroaki Nishino, Takeshi Fujita, Nguyen Thanh Cuong, Satoshi Tominaka, Masahiro Miyauchi, Soshi Iimura, Akihiko Hirata, Naoto Umezawa, Susumu Okada, Eiji Nishibori, Asahi Fujino, Tomohiro Fujimori, Shin-ichi Ito, Junji Nakamura, Hideo Hosono, Takahiro Kondo, J. Am. Chem. Soc., 139 (39), 13761-13769 (2017).

  • 139. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst, Jun-ichi Fujita, Takaki Hiyama, Ayaka Hirukawa, Takahiro Kondo, Junji Nakamura, Shin-ichi Ito, Ryosuke Araki, Yoshikazu Ito, Masaki Takeguchi, and Woei Wu Pai, Scientific Reports, 7, 12371-1~12371-10 (2017).

  • 138. Comment on “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”, Junji Nakamura, Tadahiro Fujitani, Sebastian Kuld, Stig Helveg, Ib Chorkendorff, Jens Sehested, Science, 357 (6354) (2017).

  • 137. Formation Mechanism of Boron-Based Nanosheet through the Reaction of MgB2 with Water, Hiroaki Nishino, Takeshi Fujita, Akiyasu Yamamoto, Tomohiro Fujimori, Asahi Fujino, Shin-ichi Ito, Junji Nakamura, Hideo Hosono, Takahiro Kondo, J. Phys. Chem. C, 121 (19), 10587-10593 (2017).

  • 136. Peptide Crosslinkers: Immobilization of Platinum Nanoparticles Highly Dispersed on Graphene Oxide Nanosheets with Enhanced Photocatalytic Activities, Tsukasa Mizutaru, Galina Marzun, Sebastian Kohsakowski, Stephan Barcikowski, Dachao Hong, Hiroaki Kotani, Takahiko Kojima, Takahiro Kondo, Junji Nakamura, and Yohei Yamamoto, ACS Appl. Mater. Interfaces, 9 (11), 9996-10002 (2017).

  • 135. Energy Transfer Dynamics of Formate Decomposition on Cu(110), Jiamei Quan, Takahiro Kondo, Guichang Wang, and Junji Nakamura, Angewandte Chemie Int. Ed., 56 (13), 3496-3500 (2017), Angewandte Chemie, 129 (13), 3550-3554 (2017).  Selected as a front cover picture. Selected as a Hot Paper.

  • 134. Effect of pH on the Spontaneous Synthesis of Palladium Nanoparticles on Reduced Graphene Oxide, Xiaorui Zhang, Wataru Ooki, Yoshinori R. Kosaka, Akinori Okonogi, Galina Marzun, Philipp Wagener, Stephan Barcikowski, Takahiro Kondo, Junji Nakamura, Appl. Surf. Sci. 389, 911-915 (2016).

  • 133. Enwrapping Conjugated Polymer Microspheres with Graphene Oxide Nanosheets, Yusuke Aikyo, Soh Kushida, Daniel Braam, Junpei Kuwabara, Takahiro Kondo, Takaki Kanbara, Junji Nakamura, Axel Lorke, Yohei Yamamoto, Chem. Lett. 2016 45, 1024-1026 (2016).

  • 132. Lewis Basicity of Nitrogen-Doped Graphite Observed by CO2 Chemisorption, Hisao Kiuchi, Riku Shibuya, Takahiro Kondo, Junji Nakamura, Hideharu Niwa, Jun Miyawaki, Maki Kawai, Masaharu Oshima and Yoshihisa Harada, Nanoscale Research Letters 11, 127-1-127-7 (2016).

  • 131. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts, Donghui Guo, Riku Shibuya, Chisato Akiba, Shunsuke Saji, Takahiro Kondo, Junji Nakamura, Science 351 (6271), 361-365 (2016). doi: 10.1126/science.aad0832

  • 130. Characterization of nitrogen species incorporated into graphite using low energy nitrogen ion sputtering, Hisao Kiuchi, Takahiro Kondo, Masataka Sakurai, Donghui Guo, Junji Nakamura, Hideharu Niwa, Jun Miyawaki, Maki Kawai, Masaharu Oshima and Yoshihisa Harada, Physical Chemistry Chemical Physics 18 (1), 458-465 (2016).

  • 129. Observation of Landau levels on nitrogen-doped flat graphite surfaces without external magnetic fields, Takahiro Kondo, Donghui Guo, Taishi Shikano, Tetsuya Suzuki, Masataka Sakurai, Susumu Okada, Junji Nakamura, Scientific Reports 5, 16412 (Nov. 2015). doi:10.1038/srep16412

  • 128. Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts, Galina Marzun, Junji Nakamura, Xiaorui Zhang, Stephan Barcikowski, Philipp Wagener, Applied Surface Science, 348, 75-84 (Sep. 2015). doi:10.1016/j.apsusc.2015.01.108

  • 127. Principles and Application of Heterodyne Scanning Tunnelling Spectroscopy, Eiji Matsuyama, Takahiro Kondo, Haruhiro Oigawa, Donghui Guo, Shojiro Nemoto, Junji Nakamura, Scientific Reports 4, 6711 (Oct. 2014).

  • 126. Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water, Marcus Lau, Ina Haxhiaj, Philipp Wagener, Romuald Intartaglia, Fernando Brandi, Junji Nakamura, Stephan Barcikowski, Chemical Physics Letters 610-611, 256-260 (2014).

  • 125. Support Effects of Carbon on Pt Catalysts, Junji Nakamura, Takahiro Kondo,Topics in Catalysis 56, 1560-1568 (2013).

  • 124. Size Control to a Sub-Nanometer Scale in Platinum Catalysts on Graphene, Rikson Asman Siburian, Takahiro Kondo, and Junji Nakamura, J. Phys. Chem. C 117, 3635-3645 (2013).

  • 123. Formation Process of Pt Subnano-Clusters on Graphene Nanosheets, Rikson Asman Siburian and Junji Nakamura, J. Phys. Chem. C 116, 22947-22953 (2012).

  • 122. Observation of Landau levels in potassium-intercalated graphite under a zero magnetic field, Donghui Guo, Takahiro Kondo, Takahiro Machida, Keigo Iwatake, Susumu Okada and Junji Nakamura, Nature Communications 3, 1068, 1-6 (2012).

  • 121. Scattering of CO and N2 Molecules by a Graphite Surface, Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, Junji Nakamura, W. W. Hayes and J. R. Manson, J. Phys.: Condensed Matter 24, 354001, 1-11 (2012).

  • 120. Atomic-scale characterization of nitrogen-doped graphite: Effects of dopant nitrogen on the local electronic structure of the surrounding carbon atoms, Takahiro Kondo, Simone Casolo, Tetsuya Suzuki, Taishi Shikano, Masataka Sakurai, Yoshihisa Harada, Makoto Saito, Masaharu Oshima, Mario Italo Trioni, Gian Franco Tantardini and Junji Nakamura, Phys. Rev. B 86, 035436, 1-6 (2012).

  • 119. Adsorption of CO on iron clusters on graphite. Junepyo Oh, Takahiro Kondo, Daigo Hatake, Keitaro Arakawa, Tetsuya Suzuki, Daiichiro Sekiba, and Junji Nakamura, J. Phys. Chem., C 116, 7741-7747 (2012).

  • 118. N-doped Graphene Nanosheets for Li-air Fuel Cell under Acidic Condition, E.Yoo, J.Nakamura, H.Zhou, Energy & Environmental Science, 5, 6928-6932 (2012).

  • 117. N2 emission-channel change in NO reduction over stepped Pd(211) by angle-resolved desorption, Tatsuo Matsushima, Anton Kokalj, Hideo Orita, Toshitaka Kubo, Masataka Sakurai, Takahiro Kondo, and Junji Nakamura, Surface Science, 606, 1029-1036 (2012).

  • 116. Scattering of O2 from a graphite surface, W W Hayes, Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, Junji Nakamura and J R Manson, J. Phys.: Condens. Matter 24, 104010-1~9 (21 Feb.2012).

  • 115. Angular intensity distribution of a molecular oxygen beam scattered from a graphite surface, Junepyo Oh, Takahiro Kondo, Keitaro Arakawa, Yoshihiko Saito, W. W. Hayes, J. R. Manson, and Junji Nakamura, Journal of Physical Chemistry A 115, 7089-7095 (2011).

  • 114. Effect of co-absorbed CO and reaction temperature on the dynamics of N2 desorption under steady-state N2O-CO reaction on Rh(110), Masataka Sakurai, Takahiro Kondo and Junji Nakamura, J. Chem. Phys. 134, 204710-1~7 (2011).

  • 113. Nitrogen Doping of Graphite for Enhancement of Durability of Supported Platinum Clusters, Takahiro Kondo, Tetsuya Suzuki, and Junji Nakamura, J. Phys. Chem. Lett. 2, 577-580 (2011).

  • 112. Edge states propagating from a defect of graphite: Scanning tunneling spectroscopy measurements, Takahiro Kondo, Yujiro Honma, Junepyo Oh, Takahiro Machida and Junji Nakamura, Phys. Rev. B 82, 153414, 1-4 (2010).

  • 111. Structure sensitivity for forward and reverse water-gas shift reactions on copper surfaces: A DFT study, Guichang Wang, Junji Nakamura, J. Phys. Chem. Lett. 1, 3053-3057 (2010).

  • 110. Sub-nano Pt Cluster Supported on Graphene Nanosheets for CO tolerant Catalysts in Polymer Electrolyte Fuel Cells, EunJoo Yoo, Tatsuhiro Okada, Tomoaki Akita, Masanori Kohyama, Itaru Honma and Junji Nakamura, J. Power Sources 196, 110-115 (2010).

  • 109. He/Ar-atom scattering from molecular monolayers: C60/Pt(111) and graphene/Pt(111), Y Yamada, C Sugawara, Y Satake, Y Yokoyama, R Okada, T Nakayama, M Sasaki, T Kondo, J Oh, J Nakamura, and W W Hayes, J. Phys.: Condens. Matter 22, 304010, 1-6 (2010).

  • 108. He and Ar beam scatterings from bare and defect induced graphite surfaces,  Junepyo Oh, Takahiro Kondo, Daigo Hatake, Yujiro Honma, Keitaro Arakawa, Takahiro Machida and Junji Nakamura, J. Phys.: Condens. Matter 22, 304008, 1-6 (2010).

  • 107. Hydrogen storage in Pd-Ni doped defective carbon nanotubes through the formation of CHx (x = 1, 2), Lizhen Gao, E. Yoo, Junji Nakamura, Weike Zhang and Hui Tong Chua, Carbon 48, 3250-3255 (2010).

  • 106. Angle resolved intensity and velocity distributions of N2 desorbed by N2O decomposition on Rh(110), Takahiro Kondo, Masataka Sakurai, Tatsuo Matsushima and Junji Nakamura, J. Chem. Phys. 132, 134704, 1-9 (2010).

  • 105. Significant Reduction in Adsorption Energy of CO on Platinum Clusters on Graphite, Junepyo Oh, Takahiro Kondo, Daigo Hatake, Yosuke Iwasaki, Yujiro Honma, Yoshiyuki Suda, Daiichiro Sekiba, Hiroshi Kudo and Junji Nakamura, J. Phys. Chem. Lett., 1, 463-466 (2010).

  • 104. Formation of nonbonding π electronic states of graphite due to Pt-C hybridization, Takahiro Kondo, Yosuke Iwasaki, Yujiro Honma, Yoshiteru Takagi, Susumu Okada and Junji Nakamura, Phys. Rev. B, 80, 233408 (2009).(4pages)

  • 103. Formate Adsorption on Cu(110), Ag(110) and Au(110) Surfaces, Pang Xian-Yong, Xing Bin, Wang Gui-Chang, Yoshitada, Morikawa and Junji Nakamura, Acta Physico-Chimica Sinica, 25(7), 1352-1356 (2009).

  • 102. Decomposition of metal carbides as an elementary step of carbon nanotube synthesis, Lei Ni, Keiji Kuroda, Ling-Ping Zhou, Keishin Ohta, Kiyoto Matsuishi and Junji Nakamura, Carbon, 47, 3054-3062 (2009).

  • 101. Enhanced electrocatalytic activity of Pt sub-nano clusters on graphene nanosheet surface, EunJoo Yoo, Tatsuhiro Okada, Tomoaki Akita, Masanori Kohyama, Junji Nakamura and Itaru Honma, Nano Letters, 9 (6), 2255-2259 (2009).

  • 100. Elastic and inelastic scattering components in the angular intensity distribution of He scattered from graphite, JunePyo Oh, Takahiro Kondo, Daigo Hatake and Junji Nakamura, Surface Science, 603, 895-900 (2009).

  • 99. An Extremely Active Pt/Carbon Nano-Tube Catalyst for Selective Oxidation of CO in H2 at Room Temperature, Tanaka Ken-ichi, Shou Masashi, Zhang Hongbin, Yuan Youzhu, Hagiwara Tokio, Fukuoka Atsushi, Nakamura Junji, Lu Daling, Catalysis Letters, 126, 89-95 (2008).

  • 98. Promoted catalytic activity of a platinum monolayer cluster on graphite, Takahiro
    Kondo, Ken-ichi Izumi, Kenji Watahiki, Yosuke Iwasaki, Tetsuya Suzuki and Junji Nakamura , J. Phys. Chem. C, 112, 15607-15610 (2008).

  • 97. Support effect of anode catalysts using an organic metal complex for fuel cells, Oh JunePyo, Yoo Eunjoo, Ono Chisato, Kizuka Tokushi, Okada Tatsuhiro, and Nakamura Junji, Journal of Power Sources, 185, 886-891 (2008).

  • 96. Photocoupling of methane in water vapor to saturated hydrocarbons, JunePyo Oh, Taketoshi Matsumoto, and Junji Nakamura, Catal. Lett., 124, 215-218 (2008).

  • 95. A New CO Tolerant Electro-catalyst based on Platinum and Organic Metal Clusters for Reformate Fuel Cells, Eunjoo Yoo, Tatsuhiro Okada, Junji Nakamura, Electrochemical and Solid-State Letters, 11(6), B96-B100 (2008).

  • 94. Effect of carbon substrate materials as a Pt-Ru catalyst support on the performance of direct methanol fuel cells, Eunjoo Yoo, Tatsuhiro Okada, Tokushi Kizuka, Junji Nakamura, J. Power Sources, 180, 221-226 (2008).

  • 93. Three-Ni-atom cluster formed by sulfur adsorption on Ni(111), Masamichi Yamada, Hidemi Hirashima, Akihiko Kitada, Ken-ichi Izumi, Junji Nakamura, Surf. Sci., 602, 1659-1668 (2008).

  • 92. Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas, Atsushi Okita, Yoshiyuki Suda, Akinori Oda, Junji Nakamura, Atsushi Ozeki, Krishnendu Bhattacharyya, Hirotake Sugawara, Yosuke Sakai, Carbon, 45, 1518-1526 (2007).

  • 91. Effect of Various Carbon Substrate Materials on the CO Tolerance of Anode Catalysts in Polymer Electrolyte Fuel Cells, Eunjoo Yoo, Tatsuhiro Okada, Tokushi Kizuka, Junji Nakamura, Electorochmistry, 75, 146-148 (2007).

  • 88. Reduction of Pt Usage in Fuel Cell Electrocatalysts Using Carbon Nanotubes and Non-Pt Metals, E.Yoo, Y.Nagashima, T.Matsumoto, and J.Nakamura, Polymers for advanced Technologies, 17, 540-543 (2006).  89.Efficient Thermal Conversion of Poly(pyridinediylbutadiylbutadiynylene)s to Nitrogen-containing Microporous Carbon,  Masashi Kijima, Takayuki Oda, Takahisa Yamazaki, Yasunori Tazaki, and Junji Nakamura, Chemistry Letters, 35, 844-845, (2006).  90.Analysis of Oxidation State of Multi-Layered Catalyst Thin Films for Carbon nanotube Growth Using Plasma-Enhanced Chemical Vapor Deposition, Atushi Okita, Atsushi Ozeki, Yoshiyuki Suda, Junji Nakamura, Akinori Oda, Krishnendu Bhattacharyya, Hirotake Sugawara and Yosuke Sakai, Japan Journal of Applied Physics, 45, 8323-8329 (2006).

  • 87. Kinetic Study of Carbon Nanotube Synthesis over Mo/Co/MgO Catalysts, Lei Ni, Keiji Kuroda, Ling-Ping Zhou, Tokushi Kizuka, Keishin Ohta, and Junji Nakamura, Carbon, 44, 2265-2272 (2006).

  • 86. Fuel cell anode composed of Mo2C catalyst and carbon nanotube electrode, Taketoshi Matsumoto, Yuji Nagashima, Takahisa Yamazaki and Junji Nakamura, Electrochemical and Solid-State Letters, 9, A160-A162 (2006).

  • 85. Predicting the amount of carbon in carbon nanotubes grown by CH4 rf plasmas, A.Okita, Y.Suda, A.Ozeki, H.Sugawara, Y.Sakai, A.Oda, J.Nakamura, J. Appl. Phys, 99, 014302 (2006).

  • 84. Why is formate synthesis insensitive to the copper surface structure?, Guichang Wang, Yoshitada Morikawa, Taketoshi Matsumoto and Junji Nakamura, J. Phys. Chem. B, 110, 9-11 (2006).

  • 83. Cluster and periodic DFT calculations of the adsorption of atomic nitrogen on the M(111) (M = Cu, Ag, Au) surfaces, Gui-Chang Wang, Ling Jiang, Xian-Yong Pang, Junji Nakamura, J. Phys. Chem. B, 109, 17943-17950 (2005).

  • 82. Possibilities of atomic hydrogen storage by carbon nanotubes or graphite materials, Yoo eunjoo, Taichi Habe and Junji Nakamura, Science and Technology of Advanced Materials, 6, 615-619(2005).

  • 81. Kinetic Mechanism of Methanol Decomposition on Ni(111) Surface: A Theoretical Study , G.-C.Wang, Y-H.Zhou, Y.Morikawa, J.Nakamura, Z-S.Cai, X-Z.Zhao, J. Phys. Chem. B., 109, 12431-12442 (2005).

  • 80. The relationship between adsorption energies of methyl on metals and metallic electronic properties: A first-principles DFT study, Gui-Chang Wang, Jun Li, Xiu-Fang Xu, Rui-Fang Li, and Junji Nakamura, J. Computational Chem., 26, 871-878 (2005).

  • 79. Catalytic Functions of Mo/Ni/MgO in the synthsis of Thin Carbon Nanotubes, Ling-Ping Zhou, Keishin Ohta, Keiji Kuroda, Ni Lei, Kiyoto Matsuishi, Lizhen Gao, Taketoshi Matsumoto and Junji Nakamura, J. Phys. Chem. B, 109, 4439-4447 (2005).

  • 78. Characterization of methoxy adsorption on some transition metals: A first principles density functional theory study, G.Wang, Y.Zhou and J.Nakamura, J. Chem. Phys. 122, 44707-44713 (2005).

  • 76. Cluster and periodic DFT calculations of adsorption and activation of CO2 on the Cu(hkl) surfaces, Gui-Chang Wang , Ling Jiang, Yoshitada Morikawa , Junji Nakamura, Zun-Sheng Cai, Yin-Ming Pan and Xue-Zhuang Zhao, Surface Science, 570, 205-217 (2004).  77.Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts, E.Yoo, T.Komatsu, N.Yagai, K.Arai, T.Yamazaki, K.Matsuishi, T.Matsumoto and J. Nakamura, J. Phys. Chem. B, 108, 18903-18907 (2004).

  • 75. ステップエッジと触媒活性―Ni(111)上でのH2SおよびCOの解離 北田暁彦、平島秀水、小川淳也、中野美尚、松本健俊、中村潤児、表面科学、25, 580-585 (2004).

  • 74. Efficient usage of highly despersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells, T.Matsumoto, T.Komatsu, K.Arai, T.Yamazaki, M.Kijima, H.Shimizu, Y.Takasawa, and J.Nakamura, Catalysis Today, 90, 277-281 (2004).

  • 73. Reduction of Pt usage in fuel cell electrocatalysts with carbon nanotube electrodes, T.Matsumoto, T.Komatsu, K.Arai, T.Yamazaki, M.Kijima, H.Shimizu, Y.Takasawa, and J.Nakamura, Chem.Commu., 840-841 (2004).

  • 72. A theoretical study of surface-structural sensivity of the reverse water-gas shift reaction over Cu(hkl) surfaces, G.Wang, L.Jiang, X.Pan, Z.Cai, Y.Pan, X.Zhao, Y.Morikawa and J.Nakamura, Surf. Sci, 543, 118-130 (2003).

  • 71. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts, J.Nakamura, Y.Choi, and T.Fujitani, Topics in Catalysis, 22, 277-285 (2003).

  • 70. Formation process of a Cu-Zn surface alloy on Cu(111) investigated by STM, M.Sano, T.Adaniya, T.Fujitani, and J.Nakamura, J. Phys. Chem. B, 106, 7627-7633 (2002).

  • 69. Oxidation of a Zn-deposited Cu(111) surface studied by XPS and STM, M.Sano, T.Adaniya, T.Fujitani, and J.Nakamura, Surf. Sci., 514, 261-266 (2002).

  • 68. Growth mode of carbide from C2H4  or CO on Ni(111), H.Nakano, J.Ogawa, and J. Nakamura, Surf. Sci., 514, 256-260 (2002).

  • 67. Role of lattice oxygen migration in Ni-based catalyst for natural gas conversion, S.Hamakawa, S.Yoshino, J.Nakamura, Y.Liu, A.Tsyganok, K.Suzuki, and K.Murata, Electrochem. Solid State Lett., 4, D9-D11 (2001).

  • 66. The difference in the active sites for CO2 and CO hydrogenations on Cu/ZnO-based methanol synthesis catalysts, Y.Choi, K.Futagami, T.Fujitani, and J.Nakamura, Catalysis Letters, 73, 27-31 (2001).

  • 65. Carbide-induced reconstruction initiated at step-edges on Ni(111), H.Nakano and J.Nakamura, Surf. Sci., 482-485, 341-345 (2001).

  • 64. Adsorption of CO on an MnO/Rh(100) model catalyst, H.Nishimura, J.Ogawa, and J.Nakamura, Surf. Sci., 482-485, 215-219 (2001).

  • 63. Structure-dependent kinetics for synthesis and decomposition of formate synthesis over Cu(111) and Cu(110) model catalysts, H.Nakano, I.Nakamura, T.Fujitani, and J.Nakamura, J. Phys. Chem. B, 105,1355-1365 (2001).

  • 62. The role of ZnO in Cu-ZnO methanol synthesis catalysts - Morphology effect or active site model ?-, Y.Choi, K.Futagami, T.Fujitani, and J.Nakamura, Applied Catal., 208, 163-167 (2001).

  • 61. Methane conversion into synthesis gas using an electrochemical membrane reactor, S.Hamakawa, T.Hayakawa, K.Suzuki, K.Murata, K.Takehira, S.Yoshino, J.Nakamura, and T.Uchijima, Solid State Ionics., 136-137, 761-766 (2000).

  • 60. Role of rhodium anode in the YSZ-aided CH4 oxidation into syngas, K.Sato, J.Nakamura, T.Uchijima, T.Hayakawa, S.Hamakawa, T.Tsunoda, T.Shishido and K.Takehira, Solid State Ionics., 136-137, 753-759 (2000).

  • 59. Surface structure of MnO/Rh(100) studied by STM and LEED, H.Nishimura, T.Tashiro, T.Fujitani, J.Nakamura, J. Vac. Sci. Technol., A18, 1460-1463 (2000).

  • 58. Partial oxidation of methane to synthesis gas using Ni/CaO0.8Sr0.2TiO3 anode catalyst, S.Hamakawa, M.Koizumi, R.Shiozaki, T.Hayakawa, K.Suzuki, K.Murata, K.Takehira, J.Nakamura, and T.Uchijima, J. Electrochem. Soc., 147,839- (2000).

  • 57. Carbon deposition by disproportionation of CO on a Ni(977) surface, H.Nakano, S.Kawakami, T.Fujitani, and J.Nakamura, Surf. Sci., 454-456, 295-299 (2000).

  • 56. STM study of formate species synthesized from CO2 hydrogenation and prepared by  adsorption of formic acid over Cu(111), T.Fujitani, Y.Choi, M.Sano, Y.Kushida, and J.Nakamura, J. Phys. Chem. B, 104,1235-1240 (2000).

  • 55. Synthesis and decomposition of formate on a Cu/SiO2 catalyst –Comparison to Cu(111)-, T.Yatsu, H.Nishimura, T.Fujitani, and J.Nakamura, J. Catal., 191, 423-429 (2000).

  • 54. Synthesis and decomposition of formate on a Cu(111) surface-Kinetic analysis, H.Nishimura, T.Yatsu, T.Fujitani, T.Uchijima, and J.Nakamura, J. Mol. Catal., 155/1-2,3-11 (2000).

  • 53. The chemical modification seen in the Cu/ZnO methanol synthesis catalysts, T.Fujitani and J.Nakamura, Appl. Catal., 191, 111-129 (2000).

  • 52. Reply to the comment on "The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity"[by K.C.Waugh], T.Fujitani and J.Nakamura, Catal.Lett., 63, 245-247 (1999).

  • 51. Synthesis and decomposition of formate on Cu(111) and Cu(110) surfaces: Structure sensitivity, I.Nakamura, H.Nakano, T.Fujitani, T.Uchijima, and J.Nakamura, J. Vac. Sci. Technol., A17(4), 1592-1595 (1999).

  • 50. Ab initio study of surface structural changes during methanol synthesis over Zn/Cu(111), Y.Morikawa, K.Iwata, J.Nakamura, T.Fujitani, and K.Terakura, Chem. Phys.Lett., 304, 91-97 (1999).

  • 49. CO2 reforming of CH4 over Ni/perovskite catalysts prepared by solid phase crystallization method, T.Hayakawa, S.Suzuki, J.Nakamura, T.Uchijima, S.Hamakawa, K.Suzuki, T.Shishido, and K.Takehira, Appl.Catal., A:183, 273-285 (1999).

  • 48. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity, T.Fujitani and J.Nakamura, Catal. Lett., 56, 119-124 (1998).

  • 47. Synthesis gas production in methane conversion using the Pd/yttria-stabilized zirconia/Ag electrochemical membrane system, S.Hamakawa, M.Koizumi, K.Sato, J.Nakamura, T.Uchijima, K.Murata, T.Hayakawa, and K.Takehira, Catal. Lett., 52, 191-197 (1998).

  • 46. Evidence for a special formate species adsorbed on the Cu-Zn active site for methanol synthesis, I.Nakamura, T.Fujitani, T.Uchijima, and J.Nakamura, Surf. Sci., 402-404, 92-95 (1998).

  • 45. The synthesis of methanol and the reverse water-gas shift reaction over Zn-deposited Cu(100) and Cu(110) surfaces: comparison to Zn/Cu(111), I.Nakamura, T.Fujitani, T.Uchijima, and J.Nakamura, Surf. Sci., 400, 387-400 (1998).

  • 44. Partial oxidation of methane over the (Rh or Pd)/YSZ/Ag system, K.Takehira, S.Hamakawa, T.Hayakawa, T.Tsunoda, M.Koizumi, K.Sato, J.Nakamura, T.Uchijima, ZHURNAL FIZICHESKOI KHIMII, 71 (9), 1544-1548 (1997).

  • 43. Creation of the active site for methanol synthesis on a Cu/SiO2 catalyst, T.Fujitani, T.Matsuda, Y.Kushida, S.Ogihara, T.Uchijima, and J.Nakamura, Catal. Lett., 49, 175-179 (1997).

  • 42. X-ray photoelectron spectroscopy and scanning tunnel microscope studies of formate species synthesized on Cu(111) surfaces, J.Nakamura, Y.Kushida, Y.Choi, T. Uchijima, and T.Fujitani, J. Vac. Sci. Technol., A15(3), 1568-1571 (1997).

  • 41. Methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) : formate intermediate, T.Fujitani, I.Nakamura, S.Ueno, T.Uchijima, and J.Nakamura, Appl. Surf. Sci., 121/122, 583-586 (1997).

  • 40. The kinetics and mechanism of methanol synthesis by hydrogenation of CO2 over a Zn-deposited Cu(111) surface, T.Fujitani, I.Nakamura, T.Uchijima and J.Nakamura, Surf. Sci., 383, 285-298 (1997).

  • 39. Cu(111)上に常圧で合成したフォーメート種のSTM観察, 櫛田泰宏, 崔永樹, 藤谷忠博, 内島俊雄, 中村潤児, 表面科学, 18, 478-483 (1997).

  • 38. A model catalyst for methanol synthesis: Zn‐deposited and Zn‐free Cu surfaces, I.Nakamura, T.Fujitani, T.Uchijima and J.Nakamura, J. Vac. Sci. Tech., A14 1464-1468 (1996).

  • 37. Model studies of methanol synthesis on copper catalysts, J.Nakamura, I.Nakamura, T.Uchijima, T.Watanabe, and T.Fujitani, Studies in Surface Science and Catalysis, 101, 1389-1399 (1996).

  • 36. Direct partial oxidation of CH4 into synthesis gas over Rh/YSZ/Ag, K.Takehira, T.Hayakawa, S.Hamakawa, T.Tsunoda, K.Sato, J.Nakamura and T.Uchijima, Catal.Today, 29, 397-402 (1996).

  • 35. The role of ZnO in Cu/ZnO methanol synthesis catalysts, J.Nakamura, T.Uchijima, Y.Kanai, and T.Fujitani, Catal.Today, 28, 223-230 (1996).

  • 34. A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface, J.Nakamura, I.Nakamura, T.Uchijima, Y.Kanai, T.Watanabe, M.Saito, and T.Fujitani, J. Catal., 160, 65-75 (1996).

  • 33. The synergy between Cu and ZnO in methanol synthesis catalysts, Y.Kanai, T.Watanabe, T.Fujitani, T.Uchijima, and J.Nakamura, Catal. Lett., 38, 157-163 (1996).

  • 32. Application of high-resolution electron energy loss spectroscopy to the adsorption and the photoreaction of CH2I2 and CD3OD on a MoOx thin film, H.He, J.Nakamura, N.Takehiro, and K.Tanaka, J. Vac. Sci. Tech., A13, 2689-2797 (1995).

  • 31. Methanol synthesis by the hydrogenation of CO2 over Zn-deposited Cu(111) and Cu(110) surfaces, T.Fujitani, I.Nakamura, T.Watanabe, T.Uchijima, and J.Nakamura,  Catal. Lett., 35, 297-302 (1995).

  • 30. Partial oxidation of methane to synthesis gas using a Rh/YSZ/Ag electochemical membrane reactor, K.Sato, J.Nakamura, T.Uchijima, T.Hayakawa, S.Hamakawa, T.Tsunoda, and K.Takehira, J. Chem. Soc. Faraday Trans., 91, 1655-1661 (1995).

  • 29. Development of an active Ga2O3 supported Pd catalyst for the synthesis of methanol from CO2 and H2, T.Fujitani, M.Saito, Y.Kanai, T.Watanabe, J.Nakamura, and T.Uchijima, Appl. Catal., 125, L199-L202 (1995).

  • 28. Role of ZnO promoting methanol synthesis over a physically-mixed Cu/SiO2 and ZnO/SiO2 catalyst, Y.Kanai, T.Watanabe, T.Fujitani, M.Saito, J.Nakamura, and T.Uchijima, Energy Convers.Mgmt., 36, 6-9 (1995).

  • 27. Methanol synthesis over a Zn-deposited copper model catalyst, J.Nakamura, I.Nakamura, T.Uchijima, Y.Kanai, T.Watanabe, M.Saito, and T.Fujitani, Catal. Lett., 31, 325-331 (1995).

  • 26. Partial oxidation of methane: Continuous production of synthesis gas over Rh/YSZ/Ag under oxygen supply, T.Hayakawa, K.Sato, T.Tsunoda, S.Hamakawa, K.Suzuki, J.Nakamura, K.Takehira, and T.Uchijima, J. Chem. Soc., Chem. Commun., 1899-1900 (1994).

  • 25. The formation of an OH-containing overlayer on Ni(100), J.Nakamura, M.Kazuta, S.Kawamura, I.Matsuo, T.Uematsu, T.Yamada, and K.Tanaka, Surf. Sci., 317, 109-116 (1994).

  • 24. Effect of support on methanol synthesis over Cu catalysts, T.Fujitani, M.Saito, Y.Kanai, T.Watanabe, J.Nakamura, and T.Uchijima, Chemistry Lett., 1877-1880 (1994).

  • 23. The role of support in methane reforming with CO2 over rhodium catalysts, J.Nakamura, K.Aikawa, K.Sato, and T.Uchijima, Studies in Surf. Sci. and Catal., 90, 495-500 (1994).

  • 22. Evidence for the migration of ZnOx in a Cu/ZnO methanol synthesis catalyst, Y.Kanai, T.Watanabe, T.Fujitani, M.Saito, J.Nakamura, and T.Uchijima, Catal. Lett., 27, 67-78 (1994).

  • 21. Production of synthesis gas by partial oxidation of methane and reforming of methane with carbon dioxide, T.Uchijima, J.Nakamura, K.Sato, K.Aikawa, K.Kubushiro, and K.Kunimori, Natural Gas Conversion II, edited by H.E.Curry-Hyde and R.F.Howe, Elsevier, 325-327 (1994).

  • 20. The role of metal oxide promoting copper catalysts during methanol synthesis, T.Fujitani, M.Saito, Y.Kanai, T.Watanabe, J.Nakamura, and T.Uchijima, Catal. Lett., 25, 271-276 (1994).

  • 19. Role of support in reforming of CH4 with CO2 over Rh catalysts, J.Nakamura, K.Aikawa, K.Sato, and T.Uchijima, Catal. Lett., 25, 265-270 (1994).

  • 18. Behavior of surface oxygen on a Rh/SiO2 catalyst in oxidation of methane, J.Nakamura, K.Kubushiro, and T.Uchijima, Studies in Surf. Sci. and Catal., 77, 373-376 (1993).

  • 17. Production of synthesis gas by partial oxidation of methane over the group VIII metal catalysts, J.Nakamura, S.Umeda, K.Kubushiro, K.Kunimori, T.Uchijima, Sekiyu Gakkaishi, 36, 97-104 (1993).

  • 16. Formation of CHx species on Ni(100) surface by the hydrogenation of carbidic carbon, H.He, J.Nakamura, and K.Tanaka, Surf. Sci., 283, 117-120 (1993).

  • 15. Spectroscopic evidence for the formation of CHx species in the hydrogenation of carbidic carbon on Ni(100), H.He, J.Nakamura, and K.Tanaka, Catal. Lett., 16, 407-412 (1992).

  • 14. 114.  Partial Oxidation of Methane to Synthesis Gas over Rhodium Vanadate, RhVO4: Redispersion of Rh Metal during the Reaction, K.Kunimori, S.Umeda, J.Nakamura, and T.Uchijima, Bull. Chem. Soc. of Japan, 65, 2562-2564 (1992).

  • 13. Model studies of cesium promoters in water gas shift catalysis: Cs/Cu(110), J.M.Campbell, J.Nakamura, and C.T.Campbell, J. Catal., 136, 24-42 (1992).

  • 12. Preparation, characterization, and catalytic behavior of MoRh2O6 supported on SiO2, K.Kunimori, T.Wakasugi, F.Yamakawa, H.Oyanagi, J.Nakamura, and T.Uchijima, Catal. Lett., 9, 331-338 (1991).

  • 11. Kinetics and Mechanism of the Water-gas Shift Reaction Catalysed by the Clean and Cs-promoted Cu(110) Surface: A Comparison with Cu(111), J.Nakamura, J.M.Campbell, and C.T.Campbell, J. Chem. Soc. Faraday Trans.I, 86, 2725-2734 (1990).

  • 10. Formation of a c(2x2) overlayer of nitrogen on Pd(100) by NO + CO reaction or NO + H2 reaction, T.Yamada, I.Matsuo, J.Nakamura, M.Xie, H.Hirano, Y.Matsumoto, and K.Tanaka, Surf. Sci., 231, 304-314 (1990).

  • 9. Synthesis of surface nitride on Pd(100) surface by a reaction of NO with H2, I. Matsuo, J.Nakamura, H.Hirano, T.Yamada, K.Tanaka, and K.Tamaru, J. Phys. Chem., 93, 7747-7749 (1989).

  • 8. Formation of a hybrid surface of carbide and graphite layers on Ni(100) but no hybrid surface on Ni(111), J.Nakamura, H.Hirano, M.Xie, I.Matsuo, T.Yamada, and K.Tanaka, Surf. Sci., 222, L809-L817 (1989).

  • 7. Does CO2 dissociatively adsorb on Cu surfaces?, J.Nakamura, J.A.Rodriguez, and C.T.Campbell, J. Physics:Condensed Matter, 1SB, 149-160 (1989).

  • 6. Scanning tunneling microscopy of Rh4 and Pt12 carbonyl clusters adsorbed on graphite, T.Fujimoto, A.Fukuoka, J.Nakamura, and M.Ichikawa, J. Chem. Soc., Chem. Commun., 845-848 (1989).

  • 5. Catalytic isotope scrambling of H2-D2 and the formation of surface compounds involving oxygen on Ni(100) modified by sulfur,  T.Yamada, J.Nakamura, I.Matsuo, I.Toyoshima, and K.Tanaka, Surf. Sci., 207, 323-343 (1989).

  • 4. Formation of carbidic and graphitic carbon from CO on polycrystalline cobalt, J.Nakamura, I.Toyoshima, and K.Tanaka, Surf. Sci., 201, 185-194 (1988).

  • 3. Hexagonal overlayer of hydroxyl groups on Ni(100) modified by sulfur: Effect on the H2-D2 isotope exchange reaction,  T.Yamada, J.Nakamura, S.Kawamura, and K.Tanaka, J. Electron Spectrosc. Relat. Phenom., 44, 79-88 (1987).

  • 2. Reactivity of deposited carbon on Co-Al2O3 catalyst, J.Nakamura, K.Tanaka, and I.Toyoshima, J. Catal., 108, 55-62 (1987).

  • 1. H2-D2 isotope exchange reaction on a Ni(100) surface modified by sulfur - effects of a surface compound involving oxygen -,  J.Nakamura, T.Yamada, and K.Tanaka, Surf. Sci., 185, L515-L519 (1987).

カーボンニュートラル・エネルギー国際研究所

九州大学

​Email:

  • g

ありがとうございました

© 2025 By Junji Nakamura Lab. All rights reserved.

bottom of page